
Instabilities of clock spin glasses in a magnetic field

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1989 J. Phys. A: Math. Gen. 22 2825

(http://iopscience.iop.org/0305-4470/22/14/029)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 01/06/2010 at 06:57

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/22/14
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J .  Phys. A: Math. Gen. 22 (1989) 2825-2834. Printed in the UK 

Instabilities of clock spin glasses in a magnetic field 

F D Nobref and D Sherrington 
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Abstract. We investigate the onset of replica symmetry breaking for the p-state clock spin 
glasses in a magnetic field. The p = 3 case shows a curious behaviour, the instability being 
of the Gabay-Toulouse type but with a different exponent; the results are non-invariant 
under reflection of the field ( h  + - h ) .  For p = 4, the instability is of the Almeida-Thouless 
type (Ising-like), despite the fourfold symmetry of the spin variable. For p z 5 ,  the absence 
of reflection symmetry on the spin variable is irrelevant for p odd and the behaviour is 
XY-like. 

1. Introduction 

Spin glasses continue to be a field of strong interest where new applications and open 
questions appear frequently (for recent reviews see Binder and Young 1986, van Hem- 
men and Morgenstern 1983, 1986, Mtzard et al 1987). Systems where the spin variable 
does not possess reflection symmetry, such as Potts and quadrupolar glasses (Goldbart 
and Sherrington 1985, Goldbart and Elderfield 1985, Gross et a1 1985), can present 
very different critical behaviours from the well established m-vector spin glasses. In 
particular, in the above examples for zero magnetic field, the Parisi function (Parisi 
1979) changes drastically as a direct consequence of the absence of reflection symmetry 
on the spin variable. Whether this effect is a peculiarity of Potts and quadrupolar 
glasses only, or if it plays an important role in other systems, is not known. 

It is interesting, then, to study a p-state clock spin-glass model which can be seen 
as an X Y  model in an infinite p-fold anisotropy field. As far as the Parisi solution is 
concerned, the p = 3 case presents the ‘anomaly’ already observed for Potts models 
(indeed the p = 3 clock and three-state Potts models are isomorphic), but all other 
clock glasses behave in the conventional way, presenting a monotonically increasing 
function followed by a plateau (Nobre and Sherrington 1986). The investigation of 
the effects of a finite magnetic field in such a system is the main purpose of this paper. 
The onset of replica symmetry breaking for the two extremum cases, p = 2 (de Almeida 
and Thouless 1978) and p = cc (Gabay and Toulouse 1981, Cragg et al 19821, appear 
in very different ways, defining two distinct universality classes. We show that the 
p = 3 case is again peculiar, lying in a different universality class than the ones mentioned 
above, and that the results change under reflection of the magnetic field ( h  + - h ) .  The 
p = 4 case lies in the same class as p = 2 and, despite the fourfold symmetry of the 
spin variable, a small magnetic field induces the spin-glass order to twofold symmetric. 
Finally we show that all p 2 5  clock glasses are XY-like. Therefore, similar to what 
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happened to the Parisi function (Nobre and Sherrington 1986), the reflection symmetry 
plays a crucial role for p = 3 but is qualitatively irrelevant for all other odd-state clock 
glasses. 

2. The general p-state clock spin glass 

A p-state clock model in a field is defined by 
H = -E JIJS, * SI - h  * SI 

(111 I 

where the S, are unit vectors restricted to p equally angularly spaced orientations in 
a plane, which can be seen as realisations of X Y  spin variables in a p-fold anisotropy 
field of infinite strength. In the infinite-ranged spin-glass version (Sherrington and 
Kirkpatrick 1975) the first summation is over all pairs ( i j )  with the Jll quenched random 
couplings distributed according to the probability 

P(J,)  = ( N/2rrJ2)"* exp(-NJi /2J2) .  (2.2) 
Let us work within a representation in which the components of S, are 

SI, = cos e, S,,  = sin 0, ( 2 . 3 ~ )  

( k , = o , l )  . . . )  (p-1) ) .  (2.3b) 

For a magnetic field in the x direction ( h  = h?), applying the standard replica trick 
(Edwards and Anderson 1975), one obtains the free energy per spin in the thermo- 
dynamic limit ( N  +CO)  as the extrema1 problem 

The functional g (  R", Q:!, Q$) is given by 

- In Tr exp{ H e n }  ( 2 . 5 ~ )  

where 

He* = (PI) '  (2.56) 

The spins and trace are single site and Z&, denotes a sum over different replicas, a # p. 
R" is a quadrupolar parameter given by 

R" = ( ( S ; ) * } - f  ( 2 . 6 ~ )  
while Qz! and Q:f are, respectively, the usual spin-glass parameters parallel and 
perpendicular to the external field: 

Q:! = (Sl:S!) QPP = (SPSf) a # p. (2.6b) 
In each case the ( ) bracket denotes thermal averaging with respect to H e * .  For p = 2, 
our model reduces to the well known Ising spin glass of Sherrington and Kirkpatrick 
(1975) for which R" and Qrf are zero. In the following discussion, we shall restrict 
ourselves to p > 2. 

R " [ ( S : ) ' - t ]  +f(PJ)'  2' (Q:fS:St + Q$S:Sf) + p h  2 S; . 
a 4 " 
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Within the replica symmetric approximation, R" = R, Q;: = Q,xx, QFf = Qyy, any 
average in the replica space in the limit n + O  is related to a disorder-averaged product 
of thermodynamic averages (Kirkpatrick and Sherrington 1978): 

q different replicas rdifferentreplicas I differentreplicas 

( 2 . 7 ~ )  

where 

Z = Tr exp( bSt + a,S, + a,S, ) (2 .7b)  

a, = P J Q t y u  + p h  a, = ~ J Q : { * V  b = ~ ( P J ) 2 ( 2 R - Q , , + Q , , ) .  ( 2 . 7 ~ )  

Now ( )T denotes a thermodynamic average with respect to H and [ I,, denotes a 
quenched average over the {J, ,}  distribution. 

One question of the greatest importance is the stability of the replica symmetric 
solution (de Almeida and Thouless 1978). As is well known for the m-vector spin 
glasses (Gabay and Toulouse 1981, Cragg et a1 1982), a critical line in the h-T plane 
occurs, below which replica symmetry is unstable. For small h, this line looks in 
general like 

E - h *  E = ( Tg - T ) /  Tg (2.8) 

where Tg is the spin-glass critical temperature in zero field. 
For two particular limits of the p-state clock glass the above behaviour is found 

but the critical exponent @ falls into different universality classes: 
( a )  p = 2 (Ising spin glass) (de Almeida and Thouless 1978): in this case, the critical 

line is a direct consequence of replica symmetry breaking and @ = 3 ; 
(b )  p = CO ( X U  spin glass): the ordering of the transverse degrees of freedom takes 

place at a critical line for which @ = 2 (Gabay and Toulouse 1981), and below this 
critical line replica symmetry is unstable (Cragg et a1 1982). 

The main purpose of this paper is to investigate how this critical line changes as 
we interpolate between these two limits. 

In order to do this, we turn to the stability analysis in a de Almeida-Thouless 
fashion by taking fluctuations around the replica symmetric solutions ( R "  = R + U " ;  

Q$ = Ox\- + v o p ;  Qrf = Q,, + p u p ;  CY # p ) .  The derivation of Cragg et a1 (1982) can 
be reproduced straightforwardly for the p-state clock glass to give 

( 2 . 9 ~ )  ( 1  -x\:)- A ) (  1 -x:: - A )  - ( x : : ) ) ~  = 0 

where 

XFL! = ( p J ) 2 [ ( ( s p s ~  ) T - ( S ~ ) T ( S u ) T ) 2 ] d ~  (IL, v = x, y ) .  (2 .9b)  

The 'correlation functions' x:; are to be evaluated in the replica symmetric approxima- 
tion and stability requires all eigenvalues A to be positive. 
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For large h, by solving equations (2.9), the softening to zero of A is satisfied by 
small T and one gets the line 

T u  --A 
J - ( 2 ~ ) ' ' ~  exp( - h 2 / 2 ~ ' )  ( T - 0 )  (2.10) 

which is valid in general for any value of p. The coefficient ap is a number depending 
only on the value of p :  

where 

H p ( x ) = x '  k = O  e x p ( x c o s F ) .  

(2.11a) 

(2.1 1 b )  

It can easily be evaluated analytically for p = 2,4,  or numerically for any p and typical 
values are listed in table 1. 

For small h, however, different values of p lead to distinct behaviour with different 
values for the exponent 4 and this will concern the analysis which follows. 

Table 1, The coefficient a,, (equations (2.10) and (2.11)) for several values of p; it oscillates 
for small p, but converges to a constant value as p gets large. 

~~ ~ ~ ~~ ~ ~- 

P 2  3 4 5 6 10 12 15 
ap $ 0.562 2 0.571 0.583 0.571 0.571 0.571 

3. p = 3  

This is identical to the three-state Potts glass. It is well known for the isotropic case 
( h  = 0) that the absence of reflection symmetry on the spin variable plays a crucial 
role in this case, radically changing the critical behaviour (Gross et a1 1985, Goldbart 
and Elderfield 1985, Nobre and Sherrington 1986). Special properties can also be 
noticed for the case h f 0. 

For small h, by solving equations (A2) (see the appendix), one gets the critical line 
associated with the transverse spin-glass freezing: 

E = *f(4 a,)lhl/J + (13  +:a: - $ * ) h 2 / J 2  + O( h 3 / J 3 )  (3.1) 
at which? 

( 3 . 2 ~ )  

(3.2b) 

i The quadrupolar parameter turns out be a magnetisation for p = 3  (Elderfield and Sherrington 1983). 
Trivially one has 

2rk 1 
R = [(S!)T]4, -4 = [(cos' 7 -3) ] = ;[(COS F),] = f[(S,)T].,, (k  = 0 , 1 , 2 ) .  

T B Y  LIY 
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In the equations above 

cy, = h ( 2 m  * 8) (cy+=2.18, a_=0.41)  (3.3a) 

*96+ 104a,F222cy',+53cy~ 
18a, F 16 P i  = ( p +  - -7.88, p- - -0.57) (3.36) 

and the upper (lower) signs refer to h > 0 ( h  < 0). 
In contrast to the m-vector spin glass, the results vary under the operation h- ,  -h  

for small [hi and, in particular, the parallel spin-glass parameter Q.y.x obeys the 
inequality: 

(3.4) Q . Y . X ( h  > 0 )  > Q . Y X ( h  CO) 

whereas the transverse spin-glass freezing temperature T,-: 

T,-= Tg[l T i ( 4 F  cy,)lhl/J - (13 Fya,  +:CY: - & ) h 2 / J 2 + O ( h 3 / J 3 ) ]  (3.5) 

satisfies 

Tf(h>O)< Tg< Tf(h<O). (3.6) 

From equation (3.1) one gets that, for h 3 0, E = 0 only if h = 0. However, for h < 0, 
one gets two solutions with E =0,  namely 

I h [ / J = O  or  Ihl/J -0.14 (3 .7 )  
providing the small [hi behaviour shown in figure 1. 

Thus, the operation h -, - h  tends to weaken the parallel spin-glass ordering, while 
enhancing the perpendicular ordering. This is reflected in the change of sign of the 
parameter R and is a direct consequence of the absence of reflection symmetry in the 
spin variable. The fact that R is negative for h < O  makes the transition in Q,,v more 
Ising-like, in contrast to the usual transition found for the m vectors. Since the Ising 
spin-glass transition temperature is greater than the one for the X Y  spin glass, one 
expects the increase in Tf as given by equation (3.6). 

-l \ -= - - 

0 0 4  0.8 1.2 
T I  Tg 

Figure 1. Phase diagram of the three-state clock spin glass in a magnetic field h. The lower 
line is for h > 0 and  its shape is much like the d e  Almeida-Thouless line. The upper  line 
is for h < 0 and  for small lhl one  has T,  > T,. In either case, the transition is of the 
Gabay-Toulouse type, signalling the transverse spin-glass ordering; below each line, replica 
symmetry is unstable. 



2830 F D Nobre and D Sherrington 

For T just below T,, equations (2.9) can be solved and the lowest eigenvalue is 

where Qyy grows as 

and again the upper (lower) signs refer to h > 0 ( h  < 0). Then, replica symmetry 
becomes unstable at an even lower order than the usual m-vector glasses for which 
the instability occurs at order Q:, on A. For the three-state clock spin glass in a 
magnetic field this instability occurs at order ~ * J / l h l ,  or, using (3.1), at order E. Such 
a lowering in the order of the instability has already been noticed for the case of a 
Potts glass in zero magnetic field (Elderfield and Sherrington 1983). 

For large ( h l ,  the transverse spin-glass transition is given by (2.10) for both h positive 
and negative. This is expected physically since, for either h > 0 (XY-like transition) 
(Gabay and Toulouse 1982) or h < O  (Ising-like transition) (de Almeida and Thouless 
1978), the large (hi behaviour is the same. 

Therefore, the three-state clock glass lies in a different universality class than the 
Ising and X Y  spin glasses, obeying an equation like (2.8) but with exponent + = 1. 
The absence of reflection symmetry on the spin variable plays a crucial role for small 
lhl, where the inversion of the field drastically changes the critical line, but becomes 
irrelevant for large Jhl .  The critical lines for both h > O  and h < O  are shown in figure 
1; they signal the transverse spin-glass ordering and, below them, replica symmetry is 
broken. 

91, = t E  IWJ +foxy (3.9) 

4. p = 4  

This is a very special case. As can be seen in the appendix, the critical temperature 
associated with the quadrupolar parameter R is the same as for the spin glass parameters 
Qxx and QJ,y, even in zero field. This suggests that the four-state clock spin glass may 
present quadrupolar ordering even in zero field; this is discussed in detail in the 
accompanying paper (Nobre et a1 1989) and here we shall concern ourselves with the 
onset of replica symmetry breaking in the presence of a field. 

Let us introduce Ising variables T, ,  U, ( = * l )  related to the S, by 

s , , = f ( 7 , + U 1 )  SI, = ; ( T I  -U1) (4.1) 
by means of which the Hamiltonian in equation (2.1), for the magnetic field in the x 
direction ( h  = h 2 ) ,  may be rewritten as 

H = - C j (  !J T!TJ+UtU)/)-iC ( ' , + U , )  ( 4 . 2 ~ )  

{ j ,  1 = tc J I ,  1 i = ; h .  (4.26) 
Therefore, the four-state clock model is equivalent to two independent king models, 
each with exchange interactions and magnetic field rescaled by a factor of one-half 
with respect to those of the original clock model. 

( IJ 1 I 

In a similar way, the parameters in equations (2.6) may be re-expressed as 
R " = ;( rUu") 
Qyf = a(( TOT') + 2( T O U P )  + ( U " U p ) )  

( 4 . 3 ~ )  
(4.3b) 

(4.3c) 
(a # P )  

0;; = a(( '"P) - 2( 7"UP) + (U"UP) )  (a f P ) .  
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Nobre et a1 (1989) have shown that this model is indeed ‘collinear’ in the sense 
that an infinitesimal field suffices to orient all the spins along the same axis (that of 
the field). This can easily be seen for the replica symmetric case where pure states are 
related only by global symmetry operations; because the T and (T are completely 
equivalent, for a small symmetry breaking field in the x direction: 

( T i h  = ( V i h  (4.4) 

2R = Qxx = [(&IaV Q,,,, = 0. (4.5) 

and from that follows 

However, by introducing replica symmetry breaking, many pure states unrelated by 
symmetry appear and fluctuations from average collinearity can occur (Nobre et a1 
1988). 

The onset of replica symmetry breaking can be obtained by solving (2.9), either in 
the Si or in the T ~ ,  ui representations, and one gets, as expected, a de Almeida-Thouless 
line, taking into account the proper rescalings: 

= 6( h /  J ) *  ( h  small) (4.6a) 

T/ J = 3 ( 2 ~ ) - ” ~  exp( - h2/2J2) ( h  large). (4.6b) 

The Gabay-Toulouse type of behaviour, where the ordering of the transverse 
degrees of freedom takes place already in the replica symmetric space, cannot occur 
for this case as a direct consequence of equation (4.5). Despite the fourfold symmetry 
of the spin variable, a small magnetic field suffices to set the spin glass order to twofold 
symmetric. 

5. p 3 5  

For the isotropic case ( h  = 0), p c  = 5 is the clock dimension at and above which the 
effect of the absence of reflection symmetry on the spin variable becomes irrelevant 
and the critical behaviour is XY-like (Nobre and Sherrington 1986). The same happens 
for the case h # 0 where corrections due to this effect appear only as higher-order 
terms in the perturbation expansion. Solving equations (A2) to leading order, one gets 
the critical line associated with the transverse spin-glass freezing: 

r,= r,[i - & ( h / ~ ) * ]  ( 5 . 1 ~ )  

close to which 

R = i( h /  J)’ = flhll J. ( 5 . l b )  

The stability analysis can now be done by solving equations (2.9); for T just below 
Tr and small h, the lowest eigenvalue is given by 

A = -3Q:y -- A( I h I /  J )  Q:,y + O( ( h ’/ J2 )  Qk) (5.2) 
which is negative, signalling instability. For large h, the onset of replica symmetry 
breaking is given by equation (2.10). Therefore, the clock glasses for p 3 5 all lie in 
the same universality class as the X Y  spin glass (Gabay and Toulouse 1981, Cragg et 
a1 1982). 
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6. Conclusion 

By studying the p-state clock spin glass in a magnetic field we found that the p = 3 
case (three-state Potts) is very peculiar. The onset of replica symmetry breaking is of 
the Gabay-Toulouse type but with a different exponent. The results depend on the 
sign of the magnetic field and, in particular, h > 0 (h < 0) enhances the parallel 
(perpendicular) spin-glass ordering. For p = 4, the critical behaviour is Ising-like 
despite the fourfold symmetry of the spin variable. A de Almeida-Thouless type of 
instability results in  this case. For p ” 5 ,  the effects due to the absence of reflection 
symmetry on the spin variable appear only as higher-order terms in a perturbation 
expansion, and the dominant behaviour is XY-like. 
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Appendix. Self-consistent equations in a perturbative form 

In  order to study the phase transition in the h -  T plane, it is necessary to expand the 
self-consistent equations for the order parameters perturbatively. Let us then write 
equations (2.6) in the replica symmetric approximation (see equations (2.7)): 
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The coefficients in equations (A2) are given by 
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